Una función es diferenciable en un punto x si su derivada existe en ese punto; una función es diferenciable en un intervalo si es diferenciable en todos los puntos del intervalo. Si una función no es continua en un punto x, no tiene línea tangente y, por tanto, la función no es diferenciable en ese punto; sin embargo, aunque una función sea continua en x, puede no ser diferenciable allí. En otras palabras, diferenciabilidad implica continuidad, pero no recíprocamente.
La derivada de una función diferenciable puede ser, asimismo, diferenciable. La derivada de una primera derivada se llama la segunda derivada. De un modo parecido, la derivada de una segunda derivada es la tercera derivada, y así sucesivamente. Esto también recibe el nombre de derivación sucesiva o de orden superior.
miércoles, 12 de noviembre de 2008
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario